Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.216
Filtrar
1.
ACS Nano ; 18(15): 10596-10608, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557034

RESUMO

Continuously monitoring neurotransmitter dynamics can offer profound insights into neural mechanisms and the etiology of neurological diseases. Here, we present a miniaturized implantable fluorescence probe integrated with metal-organic frameworks (MOFs) for deep brain dopamine sensing. The probe is assembled from physically thinned light-emitting diodes (LEDs) and phototransistors, along with functional surface coatings, resulting in a total thickness of 120 µm. A fluorescent MOF that specifically binds dopamine is introduced, enabling a highly sensitive dopamine measurement with a detection limit of 79.9 nM. A compact wireless circuit weighing only 0.85 g is also developed and interfaced with the probe, which was later applied to continuously monitor real-time dopamine levels during deep brain stimulation in rats, providing critical information on neurotransmitter dynamics. Cytotoxicity tests and immunofluorescence analysis further suggest a favorable biocompatibility of the probe for implantable applications. This work presents fundamental principles and techniques for integrating fluorescent MOFs and flexible electronics for brain-computer interfaces and may provide more customized platforms for applications in neuroscience, disease tracing, and smart diagnostics.


Assuntos
Dopamina , Estruturas Metalorgânicas , Ratos , Animais , Dopamina/análise , Estruturas Metalorgânicas/metabolismo , Corantes Fluorescentes/metabolismo , Fluorescência , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurotransmissores/metabolismo
2.
Langmuir ; 40(15): 7974-7981, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564230

RESUMO

An electrochemical impedimetric biosensing platform with lectin as a molecular recognition element has been established for the sensitive detection of glycoproteins, a class of important biomarkers in clinical diagnosis. One of the representative metal-organic framework materials, MIL-101(Cr)-NH2, was utilized as the supporting matrix, and its amino groups served as the anchors to immobilize the lectins of concanavalin A (Con A), constituting Con A@MIL-101(Cr)-NH2 for the determination of invertase (INV) as a model glycoprotein. The Con A concentration, immobilization time, and incubation time with INV were optimized. Under the optimal conditions, the degree of impedance increase was linearly proportional to the logarithm of INV concentration between 1.0 × 10-16 and 1.0 × 10-11 M, affording a limit of detection as low as 3.98 × 10-18 M. Good specificity, stability, reproducibility, and repeatability were demonstrated for the fabricated biosensing platform. Moreover, real mouse serum samples were spiked with different concentrations of INV. Excellent recoveries were obtained, which demonstrated the biosensing platform's capability of analyzing glycoproteins within a complex matrix.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Animais , Camundongos , Concanavalina A , Estruturas Metalorgânicas/química , Reprodutibilidade dos Testes , Lectinas/química , Glicoproteínas , Técnicas Eletroquímicas , Limite de Detecção
3.
J Colloid Interface Sci ; 665: 934-943, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569310

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are excellent alternative luminophores for electrochemiluminescence (ECL) immunoassays. However, they are inevitably limited by the aggregation-caused quenching effect. In this study, aimed at eliminating the aggregation quenching of PAHs, luminescent metal-organic frameworks (MOFs) with 1,3,6,8-tetra(4-carboxybenzene)pyrene (H4TBAPy) as the ligand were exploited as a novel nano-emitter for the construction of ECL immunoassays. The luminophore exhibits efficient aggregation-induced emission enhancement, good acid-base resistance property and unusual ECL reactivity. In addition, the simultaneous use of potassium persulfate and hydrogen peroxide as dual co-reactants resulted in a synergistic enhancement of the cathodic ECL efficiency. The use of magnetic iron-nickel alloys as the multifunctional sensing platform can further enhance the ECL activity, and its enriched zero-valent iron as a co-reactant accelerator effectively drives ECL analytical performance. Profiting from the excellent characteristics, signal-on ECL immunoassays have been constructed. With carcinoembryonic antigen as the model analysis target, a detection limit of 0.63 pg/mL was obtained within the linear range of 1 pg/mL to 50 ng/mL, accompanied by excellent analytical performance. This report opens a new window for the rational design of efficient ECL illuminators, and the proposed ECL immunoassays may find promising applications in the detection of disease markers.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Hidrocarbonetos Policíclicos Aromáticos , Pirenos , Imunoensaio , Ferro , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
4.
Mikrochim Acta ; 191(5): 263, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619658

RESUMO

A green and sensitive ratio fluorescence strategy was proposed for the detection of formaldehyde (FA) in food based on a kind of metal-organic frameworks (MOFs), MIL-53(Fe)-NO2, and nitrogen-doped Ti3C2 MXene quantum dots (N-Ti3C2 MQDs) with a blue fluorescence at 450 nm. As a type of MOFs with oxidase-like activity, MIL-53(Fe)-NO2 can catalyze o-phenylenediamine (OPD) into yellow fluorescent product 2,3-diaminophenazine (DAP) with a fluorescent emission at 560 nm. DAP has the ability to suppress the blue light of N-Ti3C2 MQDs due to inner filter effect (IFE). Nevertheless, Schiff base reaction can occur between FA and OPD, inhibiting DAP production. This results in a weakening of the IFE which reverses the original fluorescence color and intensity of DAP and N-Ti3C2 MQDs. So, the ratio of fluorescence intensity detected at respective 450 nm and 560 nm was designed as the readout signal to detect FA in food. The linear range of FA detection was 1-200 µM, with a limit of detection of 0.49 µM. The method developed was successfully used to detect FA in food with satisfactory results. It indicates that MIL-53(Fe)-NO2, OPD, and N-Ti3C2 MQDs (MON) system constructed by integrating the mimics enzyme, enzyme substrate, and fluorescent quantum dots has potential application for FA detection in practical samples.


Assuntos
Estruturas Metalorgânicas , Fenilenodiaminas , Pontos Quânticos , Corantes Fluorescentes , Dióxido de Nitrogênio , Formaldeído
5.
Environ Geochem Health ; 46(5): 156, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592524

RESUMO

This study presents a facile preparation and durable amorphous Fe and Al-based MOF nanoplate (AlFe-BTC MOFs) catalyst with notable stability in Fenton reactions. Rigorous characterization using XRD, HR-TEM, and BET confirms the amorphous nature of the synthesized AlFe-BTC MOFs, revealing mesopores (3.4 nm diameter), a substantial surface area (232 m2/g), and a pore volume of 0.69 cc/g. XPS analysis delineates distinct Al2p and Fe2p binding energy values, signifying specific chemical bonding. FE-SEM elemental mapping elucidates the distinctive distribution of Fe and Al within the framework of AlFe-BTC MOFs. In catalytic activity testing, the amorphous AlFe-BTC MOFs exhibited outstanding performance, achieving complete degradation of Methylene blue (MB) dye and 78% TOC removal over 45 min of treatment under mild reaction conditions. The catalyst's durability was assessed, revealing about 75% TOC removal and complete dye decomposition over five successive recycles, with less than 1 mg/L of Fe and Al leaching. UV-Vis spectra revealed the destruction of MB dye over multiple recycling studies. Based on this finding, the amorphous AlFe-BTC MOF nanoplates emerge as a promising solution for efficient dye removal from industrial wastewater, underscoring their potential in advanced environmental remediation processes.


Assuntos
Recuperação e Remediação Ambiental , Estruturas Metalorgânicas , Indústrias , Ferro , Azul de Metileno
6.
Sci Rep ; 14(1): 8217, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589481

RESUMO

The present study of a novel metal-organic framework containing Fe single atoms doped on electrospun carbon nanofibers (Fe SA-MOF@CNF) based on dispersive micro solid phase extraction (D-µ-SPE) using HPLC-PDA for detection tartrazine in fake saffron samples was designed. The Fe SA-MOF@CNF sorbent was extensively characterized through various techniques including N2 adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The specific area of surface of the sorbent was 577.384 m2/g. The study variables were optimized via the central composite design (CCD), which included a sorbent mass of 15 mg, a contact time of 6 min, a pH of 7.56, and a tartrazine concentration of 300 ng/ml. Under the optimum condition, the calibration curve of this method was linear in the range of 5-1000 ng/mL, with a correlation coefficient of 0.992. The LOD and LOQ values were ranged 0.38-0.74 and 1.34-2.42 ng/ml, respectively. This approach revealed significant improvements, including high extraction recovery (98.64), recovery rates (98.43-102.72%), and accuracy (RSDs < 0.75 to 3.6%). the enrichment factors were obtained in the range of 80.6-86.4 with preconcentration factor of 22.3. Consequently, the D-µ-SPE method based on synthesized Fe SA-MOF@CNF could be recommended as a sustainable sorbent for detecting tartrazine in saffron samples.


Assuntos
Crocus , Estruturas Metalorgânicas , Tartrazina , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Corantes
7.
Protein Sci ; 33(5): e4971, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591647

RESUMO

As protein crystals are increasingly finding diverse applications as scaffolds, controlled crystal polymorphism presents a facile strategy to form crystalline assemblies with controllable porosity with minimal to no protein engineering. Polymorphs of consensus tetratricopeptide repeat proteins with varying porosity were obtained through co-crystallization with metal salts, exploiting the innate metal ion geometric requirements. A single structurally exposed negative amino acid cluster was responsible for metal coordination, despite the abundance of negatively charged residues. Density functional theory calculations showed that while most of the crystals were the most thermodynamically stable assemblies, some were kinetically trapped states. Thus, crystalline porosity diversity is achieved and controlled with metal coordination, opening a new scope in the application of proteins as biocompatible protein-metal-organic frameworks (POFs). In addition, metal-dependent polymorphic crystals allow direct comparison of metal coordination preferences.


Assuntos
Estruturas Metalorgânicas , Proteínas , Proteínas/genética , Proteínas/química , Metais/química , Cristalização
8.
ACS Appl Mater Interfaces ; 16(14): 17219-17231, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561895

RESUMO

Herein, we demonstrate the detection of glucose in a noninvasive and nonenzymatic manner by utilizing an extended gate field-effect transistor (EGFET) based on the organic molecule pyrene phosphonic acid (PyP4OH8) incorporated nickel metal-organic framework (NiOM-MOF). The prepared electrode responds selectively to glucose instead of sucrose, fructose, maltose, ascorbic acid, and uric acid in a 1× phosphate buffer saline solution. Also, utilizing the scanning Kelvin probe system, the sensing electrode's work function (Φ) is measured to validate the glucose-sensing mechanism. The sensitivity, detection range, response time, limit of detection, and limit of quantification of the electrode are determined to be 24.5 µA mM-1 cm-2, 20 µM to 10 mM, less than 5 s, 2.73 µM, and 8.27 µM, respectively. Most interestingly, the developed electrode follows the Michaelis-Menten kinetics, and the calculated rate constant (km) 0.07 mM indicates a higher affinity of NiOM-MOF toward glucose. The real-time analysis has revealed that the prepared electrode is sensitive to detect glucose in real human saliva, and it can be an alternative device for the noninvasive detection of glucose. Overall, the outcomes of the EGFET studies demonstrate that the prepared electrodes are well-suited for expeditious detection of glucose levels in saliva.


Assuntos
Diabetes Mellitus , Estruturas Metalorgânicas , Humanos , Glucose/análise , Eletrodos , Pirenos
9.
Mikrochim Acta ; 191(5): 252, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589716

RESUMO

A flexible, wearable, non-invasive contact lens sensor utilizing nickel-cobalt metal-organic framework (Ni-Co-MOF) based hydrogel is introduced for urea monitoring in tear samples. The synthesized Ni-Co-MOF hydrogel exhibits a porous structure with interconnected voids, as visualized by Scanning Electron Microscopy (SEM). Detailed structural and vibrational properties of the material were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Raman spectroscopy. The developed Ni-Co-MOF hydrogel sensor showcases a detection limit of 0.445 mM for urea within a linear range of 0.5-70 mM. Notably, it demonstrates exceptional selectivity, effectively distinguishing against interfering species like UA, AA, glucose, dopamine, Cl-, K+, Na+, Ca2+, and IgG. The enhanced electrocatalytic performance of the Ni-Co-MOF hydrogel electrode is attributed to the presence of Ni and Co, fostering Ni2+ oxidation on the surface and forming a Co2+ complex that acts as a catalyst for urea oxidation. The fabricated sensor exhibits successful detection and retrieval of urea in simulated tear samples, showcasing promising potential for bioanalytical applications. The binder-free, non-toxic nature of the Ni-Co-MOF hydrogel sensor presents exciting avenues for future utilization in non-enzymatic electrochemical sensing, including applications in wearable devices, point-of-care diagnostics, and personalized healthcare monitoring.


Assuntos
Estruturas Metalorgânicas , Dispositivos Eletrônicos Vestíveis , Níquel/química , Estruturas Metalorgânicas/química , Ureia , Cobalto , Hidrogéis
10.
J Chromatogr A ; 1721: 464854, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38579528

RESUMO

Developing adsorbents with high performance and long service life for effective extracting the trace organochlorine pesticides (OCPs) from real water is attracting numerous attentions. Herein, a self-standing covalent organic framework (COF-TpPa) membrane with fiber morphology was successfully synthesized by using electrospun nanofiber membranes as template and employed as solid-phase microextraction (SPME) coating for ultra-high sensitivity extraction and analysis of trace OCPs in water. The as-synthesized COF-TpPa membrane exhibited a high specific surface area (800.83 m2 g-1), stable nanofibrous structure, and excellent chemical and thermal stability. Based on the COF-TpPa membrane, a new SPME analytical method in conjunction with gas chromatography-mass spectrometry (GC-MS) was established. This proposed method possessed favorable linearity in concentration of 0.05-2000 ng L-1, high sensitivity with enrichment factors ranging from 2175 to 5846, low limits of detection (0.001-0.150 ng L-1), satisfactory precision (RSD < 10 %), and excellent repeatability (>150 cycles), which was better than most of the reported works. Additionally, the density functional theory (DFT) calculations and XPS results demonstrated that the outstanding enrichment performance of the COF-TpPa membrane was owing to synergistic effect of π-π stacking effects, high specific surface area and hydrogen bonding. This work will expect to extend the applications of COF membrane to captures trace organic pollutants in complex environmental water, as well as offer a multiscale interpretation for the design of effective adsorbents.


Assuntos
Hidrocarbonetos Clorados , Estruturas Metalorgânicas , Nanofibras , Praguicidas , Poluentes Químicos da Água , Água , Porosidade , Poluentes Químicos da Água/análise , Microextração em Fase Sólida/métodos , Praguicidas/análise , Hidrocarbonetos Clorados/análise
11.
Biosens Bioelectron ; 255: 116271, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583355

RESUMO

The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.


Assuntos
Técnicas Biossensoriais , Diclorofeno , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Peroxidases/química , Peroxidase , Colorimetria/métodos , Fenóis , Peróxido de Hidrogênio/química
12.
Biochem Biophys Res Commun ; 710: 149889, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581955

RESUMO

The nanomedicine system based on dual drug delivery systems (DDDs) can significantly enhance the efficacy of tumor treatment. Herein, a metal-organic framework, Zeolite imidazole salt frames 8 (ZIF-8), was successfully utilized as a carrier to load the dual chemotherapeutic drugs doxorubicin (DOX) and camptothecin (CPT), named DOX/CPT@ZIF-8 (denoted as DCZ), and their inhibitory effects on 4T1 breast cancer cells were evaluated. The study experimentally demonstrated the synergistic effects of the dual chemotherapeutic drugs within the ZIF-8 carrier and showed that the ZIF-8 nano-carrier loaded with the dual drugs exhibited stronger cytotoxicity and inhibitory effects on 4T1 breast cancer cells compared to single-drug treatment. The use of a ZIF-8-based dual chemotherapeutic drug carrier system highlighted its potential advantages in suppressing 4T1 breast cancer cells.


Assuntos
Neoplasias da Mama , Estruturas Metalorgânicas , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Linhagem Celular Tumoral
13.
Chem Commun (Camb) ; 60(33): 4463-4466, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38563776

RESUMO

Magnetostrictive CoFe2O4 (CFO) nanoparticles were encapsulated within a UiO-66 metal-organic-framework layer to form a CFO@UiO-66 nanohybrid. The deforming of CFO, in response to a high-frequency AC magnetic field, initiates the piezocatalytic property of UiO-66 to generate ˙OH radicals, which can kill cancer cells buried in thick tissues, showcasing bright potential for deep-seated tumor treatment.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Ácidos Ftálicos , Humanos , Campos Magnéticos
14.
ACS Appl Mater Interfaces ; 16(15): 18245-18251, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564422

RESUMO

Plant synthetic biology is applied in sustainable agriculture, clean energy, and biopharmaceuticals, addressing crop improvement, pest resistance, and plant-based vaccine production by introducing exogenous genes into plants. This technique faces challenges delivering genes due to plant cell walls and intact cell membranes. Novel approaches are required to address this challenge, such as utilizing nanomaterials known for their efficiency and biocompatibility in gene delivery. This work investigates metal-organic frameworks (MOFs) for gene delivery in intact plant cells by infiltration. Hence, small-sized ZIF-8 nanoparticles (below 20 nm) were synthesized and demonstrated effective DNA/RNA delivery into Nicotiana benthamiana leaves and Arabidopsis thaliana roots, presenting a promising and simplified method for gene delivery in intact plant cells. We further demonstrate that small-sized ZIF-8 nanoparticles protect RNA from RNase degradation and successfully silence an endogenous gene by delivering siRNA in N. benthamiana leaves.


Assuntos
Arabidopsis , Estruturas Metalorgânicas , Ácidos Nucleicos , Células Vegetais , Arabidopsis/genética , RNA Interferente Pequeno
15.
ACS Appl Mater Interfaces ; 16(15): 18608-18626, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565551

RESUMO

Hypoxia, chronic inflammation, and elevated reactive oxygen species (ROS) production induced by hyperglycemia pose formidable challenges to the healing of diabetic chronic wounds, often resulting in impaired recovery. Currently, sustainable and eco-friendly therapeutic approaches targeting this multifaceted problem remain uncharted. Herein, we develop a unique three-functional covalent organic framework (COF)-modified microalgae gel designed for the preparation and treatment of chronic diabetic wounds. The gel comprises an oxygen-releasing basic fibroblast growth factor (bFGF) microalgae matrix, augmented by an ROS-responsive COF. Although two of these components have been reported to be used in wound healing, the combination of all three functions represents an innovative approach to synergize the treatment of chronic diabetic wounds. Therefore, we propose a new concept of "ligand interlocking" with three functional synergistic effects. Specifically, the COF has a similar effect to the "double Excalibur", which binds bFGF to promote angiogenesis and proliferation and inhibit the inflammatory response of chronic wounds and binds live microalgae to eliminate ROS and release dissolved oxygen to alleviate the hypoxia of wounds. Moreover, in vivo experiments and RNA sequencing analyses similarly demonstrated that the COF-modified microalgae gel reduced the inflammatory cascade cycle in the wound site and promoted vascular and tissue regeneration. We posit that the COF-modified microalgae gel represents a promising strategy for the active in vivo delivery of therapeutics to the wound body in intensive care unit settings.


Assuntos
Diabetes Mellitus , Estruturas Metalorgânicas , Microalgas , Humanos , Fator 2 de Crescimento de Fibroblastos , Espécies Reativas de Oxigênio , Géis , Hipóxia , Oxigênio , Hidrogéis
16.
Anal Methods ; 16(15): 2386-2399, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572640

RESUMO

A novel fluorescence sensor based on a porphyrinic zirconium-based metal-organic framework, L-cysteine-modified PCN-222 (L-Cys/PCN-222), was developed to selectively recognize histidine enantiomers and sensitively detect Hg2+. The dual-functional sensor was successfully prepared via the solvent-assisted ligand incorporation method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analyses. L-Cys/PCN-222 not only showed a higher quenching response for L-histidine than that for D-histidine with a fast fluorescent response rate of <40 s but also exhibited low detection limits for L- and D-histidine (2.48 µmol L-1 and 3.85 µmol L-1, respectively). Moreover, L-Cys/PCN-222 was employed as a fluorescent and visual sensor for the highly sensitive detection of Hg2+ in the linear range of 10-500 µmol L-1, and the detection limit was calculated to be 2.79 µmol L-1 in surface water. The specific and selective recognition of chiral compounds and metal ions by our probe make it suitable for real field applications.


Assuntos
Mercúrio , Estruturas Metalorgânicas , Espectroscopia de Infravermelho com Transformada de Fourier , Histidina , Estruturas Metalorgânicas/química , Zircônio , Cisteína/análise , Cisteína/química , Corantes Fluorescentes/química , Mercúrio/análise
17.
Anal Chim Acta ; 1304: 342552, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637053

RESUMO

BACKGROUND: Rapid and accurate detection of glutathione content in human blood plays an important role in real-time tracking of related diseases. Currently, surface-enhanced Raman scattering/spectroscopy (SERS) combined with nanozyme material has been proven to have excellent properties in the detection applications compared to many other methods because of it combines the advantages of trace detection capability of SERS and efficient catalytic activity of nanozymes. However, there are still existing problems in real sample detection, and to achieve quantitative detection is still challenging. RESULTS: In this study, gold nanoparticles (AuNPs) were synthesized in situ on the surface of two-dimensional Cu-porphyrin metal-organic framework (MOF) nanosheets to produce the AuNPs@Cu-porphyrin MOF nanozyme, which exhibited both oxidase-like activity and SERS detection ability. On one hand, the intrinsic oxidase-like activity of the nanozyme could be inhibited due to the chelation of glutathione (GSH) and Cu, which thus led to the visual color change of the solution. On the other hand, the abundant Raman "hot spots" at the nanogap generated by Au NPs and the internal standard (IS) signal provided by Cu-meso-tetra (4-carboxyphenyl) porphine (Cu-TCPP) MOF improved the sensitivity and quantitative accuracy of detection. SIGNIFICANCE AND NOVELTY: A dual-mode signal output sensor based on the nanozyme was thus established, which could be used in the trace detection of GSH. Such a dual-mode sensor possesses excellent detection performance, with the advantage of both wide detection range from 1 to 300 µM in the colorimetric detection mode and high sensitivity with LOD of 5 nM in the SERS detection mode, and can be applied to GSH detection in actual serum samples with reliable results.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Ouro/química , Estruturas Metalorgânicas/química , Colorimetria , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Oxirredutases , Glutationa
18.
Sci Rep ; 14(1): 7882, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570568

RESUMO

Pharmaceutical active compounds (PhACs) are some of the most recalcitrant water pollutants causing undesired environmental and human effects. In absence of adapted decontamination technologies, there is an urgent need to develop efficient and sustainable alternatives for water remediation. Metal-organic frameworks (MOFs) have recently emerged as promising candidates for adsorbing contaminants as well as providing photoactive sites, as they possess exceptional porosity and chemical versatility. To date, the reported studies using MOFs in water remediation have been mainly focused on the removal of a single type of PhACs and rarely on the combined elimination of PhACs mixtures. Herein, the eco-friendly bismuth-based MOF, SU-101, has been originally proposed as an efficient adsorbent-photocatalyst for the elimination of a mixture of three challenging persistent PhACs, frequently detected in wastewater and surface water in ng L-1 to mg·L-1 concentrations: the antibiotic sulfamethazine (SMT), the anti-inflammatory diclofenac (DCF), and the antihypertensive atenolol (At). Adsorption experiments of the mixture revealed that SU-101 exhibited a great adsorption capacity towards At, resulting in an almost complete removal (94.1 ± 0.8% for combined adsorption) in only 5 h. Also, SU-101 demonstrated a remarkable photocatalytic activity under visible light to simultaneously degrade DCF and SMT (99.6 ± 0.4% and 89.2 ± 1.4%, respectively). In addition, MOF-contaminant interactions, the photocatalytic mechanism and degradation pathways were investigated, also assessing the toxicity of the resulting degradation products. Even further, recycling and regeneration studies were performed, demonstrating its efficient reuse for 4 consecutive cycles without further treatment, and its subsequent successful regeneration by simply washing the material with a NaCl solution.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Humanos , Adsorção , Poluentes Químicos da Água/análise , Águas Residuárias , Atenolol , Estruturas Metalorgânicas/química , Diclofenaco , Água , Preparações Farmacêuticas
19.
Luminescence ; 39(3): e4713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515291

RESUMO

As large numbers of people are suffering from gout, an accurate, rapid, and sensitive method for the detection of gout biomarker, uric acid, is important for its effective control, diagnosis, and therapy. Although colorimetric detection methods based on uricase have been considered, they still have limitations as they produce toxic H2O2 and are expensive and not stable. Here, a novel uricase-free colorimetric method was developed for the sensitive and selective detection of uric acid based on the light-induced oxidase-mimicking activity of a new photosensitized covalent organic framework (COF) (2,4,6-trimethylpyridine-3,5-dicarbonitrile-4-[2-(4-formylphenyl)ethynyl]benzaldehyde COF [DCTP-EDA COF]). DCTP-EDA COF has a strong ability to harvest visible light, and it could catalyze the oxidation of 1,4-dioxane, 3,3',5,5'-tetramethylbenzidine under visible light irradiation to produce obvious color changes. With the addition of uric acid, however, the significant inhibition of the oxidase-mimicking activity of DCTP-EDA COF remarkably faded the color, and thus uric acid could be colorimetrically detected in the range of 2.0-150 µM with a limit of detection of 0.62 µM (3σ/K). Moreover, the present colorimetric method exhibited high selectivity; uric acid level in serum samples was successfully determined, and the recoveries ranged from 96.5% to 105.64%, suggesting the high accuracy of the present colorimetric method, which demonstrates great promise in clinical analysis.


Assuntos
Gota , Estruturas Metalorgânicas , Humanos , Oxirredutases , Ácido Úrico , Peróxido de Hidrogênio , Colorimetria/métodos , Urato Oxidase
20.
Talanta ; 272: 125840, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430865

RESUMO

The development of convenient, fast, and cost-effective methods for differentiating and detecting common organic pollutant phenols has become increasingly important for environmental and food safety. In this study, a copper metal-organic framework (Cu-MOF) with flower-like morphology was synthesized using 2-methylimidazole (2-MI) as ligands. The Cu-MOF was designed to mimic the natural laccase active site and proved demonstrated excellent mimicry of enzyme-like activity. Leveraging the superior properties of the constructed Cu-MOF, a colorimetric method was developed for analyzing phenolic compounds. This method exhibited a wide linear range from 0.1 to 100 µM with a low limit of detection (LOD) of 0.068 µM. Besides, by employing principal component analysis (PCA), nine kinds of phenols was successfully distinguished and identified. Moreover, the combination of smartphones with RGB profiling enabled real-time, quantitative, and high-throughput detection of phenols. Therefore, this work presents a paradigm and offers guidance for the differentiation and detection of phenolic pollutants in the environment.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Lacase , Cobre/química , Colorimetria , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...